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EXPERIMENTAL INVESTIGATION O F  HEAVY-MOLECULE 

PR0PELZ;ANTS I N  AN ELECTRON- 

BOMBARDMENT “ S T O R  

by David C. Byers, W i l l i a m  R. Kersbke ,  and Jack Grobman 

Lewis Research Center 

SUMMARY 

An experimental program w a s  undertaken to determine t h e  performance of 
several  heavy molecular compounds i n  a 10-centimeter-diameter e lectron-  
bombardment ion thrustor .  The e f f e c t s  of various th rus to r  parametric changes 
on the  ove ra l l  performance of a pa r t i cu la r  heavy molecular compound were a l so  
investigated.  

The experimental r e s u l t s  indicated t h a t  heavy-molecule ion  beams could not 
be produced i n  quantity,  at acceptable l e v e l s  of t h r u s t o r  e f f ic iency ,  from an 
electron-bombardment th rus to r  of a design present ly  used with monatomic propel- 
lants. The study of the  performance of severa l  tes t  molecular propel lan ts  sug- 
gested t h a t  t h rus to r  discharge phenomena w e r e  more important i n  determining the  
average mass of the  ions i n  the  exhaust beam than were molecular composition 
and s t r u c t u r a l  cha rac t e r i s t i c s .  Variat ion of a number of t h rus to r  parameters 
i n  an attempt t o  reduce molecular fragmentation produced no s ign i f i can t  i m -  
provement i n  ove ra l l  t h rus to r  performance. 

INTRODUCTION 

An experimental program w a s  i n i t i a t e d  t o  inves t iga te  the  f e a s i b i l i t y  of 
employing high-molecular-weight compounds as propel lan ts  i n  an electron-  
bombardment thrus tor .  
g rea te r  than 200 amu) a r i s e s  pr imari ly  from t h e  f a c t  t h a t ,  at a given spec i f i c  
impulse, the  th rus to r  power e f f i c i ency  would be expected t o  increase as ion  
mass t o  charge r a t i o  i s  increased, provided t h a t  t he  energy required t o  form an 
ion does not vary s i g n i f i c a n t l y  with ion m a s s .  This e f f e c t  i s  of p a r t i c u l a r  
i n t e r e s t  a t  spec i f i c  impulses below 10,000 seconds (ref. 1). The use of heavy 
molecules would r e s u l t  i n  l a r g e r  acce lera tor  g r i d  spacings as a consequence of 
t he  p r a c t i c a l  l i m i t  on e l e c t r i c  f i e l d  i n t e n s i t i e s  between the acce lera tor  g r i d s  
( r e f .  2) .  This increased spacing should ease p r a c t i c a l  design and f ab r i ca t ion  
problems f o r  t h rus to r s  operating i n  the  spec i f i c  impulse range of i n t e r e s t .  

The des i r e  f o r  using heavy molecules, (i. e., with masses 



The study he re in  cons is ted  of two phases. F i r s t ,  an attempt w a s  made t o  
determine the  performance of t h e  t e s t  p rope l lan ts  i n  a 10-centimeter-diameter 
th rus tor .  For t h i s  phase, most of t he  molecules were se lec ted  on the  b a s i s  of 
s t a b i l i t y  t o  e l ec t ron  impact ( r e f .  3) and high vapor pressure a t  moderate tem- 
peratures.  Thrust t a r g e t  measurements were taken over a v a r i e t y  of t h rus to r  
operating condi t ions i n  order to determine t h e  e f f e c t i v e  mass of the  ions i n  
t h e  th rus to r  ion beam. Operational data,  such as propel lan t  u t i l i z a t i o n  e f f i -  
ciency and t h r u s t o r  power e f f ic iency ,  were computed throughout the  tests. 

I n  t h e  second phase, a program of va r i a t ion  of geometric and e l e c t r i c a l  
t h rus to r  parameters w a s  undertaken i n  order to determine which phys ica lphe -  
nomena are most responsible  f o r  fragmentation. Possible  processes might in -  
clude fragmentation due to w a l l  in te rac t ions ,  excessive propel lan t  temperature, 
excessive primary e l ec t ron  energy, mult iple  impact, and apparent fragmentation 
due t o  mult iple  ionizat ion.  Most data  i n  t h i s  phase were taken with stannic 
iodide as a propel lant .  

APPARATUS AND PROCEDURE 

A cutaway sketch of t he  10-centimeter-diameter electron-bombardment 
th rus to r  used f o r  the  bulk of t he  experiments and on which most modifications 
were made i s  shown i n  f igu re  1. A schematic diagram of the e l e c t r i c a l  system 
i s  shown i n  f i g u r e  2. 

The propel lant  f lows through a ca l ib ra t ed  o r i f i c e  between the  vaporizer 
and the  flow d i s t r ibu to r .  After  leaving the  d i s t r i b u t o r ,  t he  flow en te r s  t h e  
ion chamber. A f i e l d  winding surrounding the  ion chamber provides a magnetic 
f i e l d  roughly p a r a l l e l  to t he  axis of the  ion chaaiber. Electrons from a hot  
f i lament bombard the n e u t r a l  molecules i n  the  ion chamber, ionizing some of 
them. The ions then d i f fuse  to t he  ion-accelerat ing region between the  screen 
and acce lera tor  p l a t e  and a r e  e jec ted  from the  thrus tor .  The performance of 
t h i s  t f l e  t h rus to r  with mercury as a propel lan t  has  been described previously 
( r e f .  4).  

External e l e c t r i c a l  c i r c u i t r y  provided cont ro l  over the  th rus to r  discharge 
and output parameters. ??le primary e l ec t ron  energy i s  e s s e n t i a l l y  a funct ion 
of t he  ion-chaniber p o t e n t i a l  d i f fe rence  (discharge vol tage) .  
beam current  is, i n  general ,  proport ional  t o  the  fi lament emission current ,  a l -  
though the  exact dependence i s  s t rongly affected by t h e  other  t h rus to r  va r i -  
ables. 
cated and i s  described i n  d e t a i l  i n  reference 5. 

The l e v e l  of ion  

The i n t e r r e l a t i o n  of the  various t h r u s t o r  parameters i s  qui te  compli- 

Both steam-jacketed and e l e c t r i c a l l y  heated vaporizers  ( re f .  6 )  were used 
i n  the  program. "he vaporizer operating temperature and flow-limiting o r i f i c e  
s i z e  were chosen to produce a vapor pressure of approximately 100 to 500 m i -  
crons of mercury i n  the vaporizer and equivalent neu t r a l  beam current  J, of 
about 0.15 ampere, with the  assumption of a un i t  charge on each molecule. ( A l l  
sy-&ols a r e  defined i n  appendix A.) This propel lant  flow r a t e  w a s  se lec ted  be- 
cause a previous inves t iga t ion  ( r e f .  7 )  has  shown t h a t  f o r  an acce lera tor  l i f e  
of about 10,000 hours, with mercury propel lant  i n  a 10-centimeter-diameter 
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th rus tor ,  beam curren ts  should be about 0.15 ampere. 

For those molecules f o r  which vapor pressure da t a  were not ava i lab le ,  an 
i n i t i a l  ca l ib ra t ion  w a s  made t o  determine the  vaporizer temperature and o r i f i c e  
s i zes  necessary t o  produce a des i red  propel lant  flow r a t e .  With a known vapor- 
i z e r  temperature, o r i f i c e  s ize ,  and mass flow r a t e  (from weight l o s s  over a 
known time per iod)  it w a s  possible  t o  es t imate  the  vapor pressure (e.g., 
re f .  8).  Experimental da t a  on the  t e s t  molecules a r e  l i s t e d  i n  t a b l e  I. 

A s  the  flow c a l i b r a t i o n  gave only approximate r e s u l t s ,  the  propel lant  mass 
w a s  weighed before and a f t e r  each th rus to r  run t o  determine the  in tegra ted  neu- 
t r a l  flow rate. 
and as the  temperature would remain constant t o  within 1 / Z o  C with steam vapor- 
i ze r s ,  a good est imate  of the  average neu t r a l  propel lant  flow r a t e  could be ob- 
tained. Steam-jacketed vaporizers  provided more accurate  temperature cont ro l  
than the  e l e c t r i c  vaporizer and hence were u t i l i z e d  whenever possible.  

The length of a t y p i c a l  t h rus to r  t es t  w a s  longer than 1 hour, 

The inves t iga t ion  w a s  conducted i n  one of t he  5-foot-diameter 16-foot-long 
vacuum f a c i l i t i e s  a t  t h e  NASA Lewis Research Center. The tank, shown i n  f i g -  
ure 3, has th ree  32-inch o i l -d i f fus ion  pumps t h a t  feed i n t o  a common e j e c t o r  
pmp, followed by a mechanical pump. With cryogenic pumping used i n  conjunc- 
t i o n  with the  pumps, tank pressures  of approximately mill imeter of mercury 
were maintained during th rus to r  operation. 

Thrust Me a sur ement 

The t h r u s t  of t he  ion beam w a s  measured with conica l  t h r u s t  t a rge t s ,  which 
were a l l  50 centimeters long and e i t h e r  25 or 28 centimeters wide a t  the  base 
and were fabr ica ted  of 0.025-millimeter-thick s t a i n l e s s  s t e e l  or C. 05- 
mill imeter-thick titanium. Titanium w a s  found preferab le  pr imari ly  because of 
i t s  l i g h t  weight. Titanium i s  a l s o  advantageous because of i t s  low sput te r ing  
y i e ld  (ref .  9 )  and a b i l i t y  t o  withstand high temperatures. 

Figure 3 a l so  shows the  loca t ion  of t he  t h r u s t  t a r g e t  (similar i n  con- 
s t ruc t ion  t o  t h a t  described i n  ref. lo) and t h e  thrustor .  The dis tance between 
the  th rus to r  and the  t h r u s t  t a r g e t  w a s  40 centimeters. 

During operation of t he  th rus to r ,  the  t a r g e t  w a s  def lec ted  by t h e  ion 
beam. I f  the t h r u s t  and t h e  ion beam parameters a re  known, it - i s  possible  t o  
ca l cu la t e  t he  e f f ec t ive  m a s s  of t h e  impinging beam p a r t i c l e s  from the  equation 

where F i s  the  measured t h r u s t  i n  newtons, C i s  a constant,  VI i s  the  anode 
p o t e n t i a l  i n  vo l t s ,  J B  i s  the  beam current  i n  amperes, and % i s  the  e f fec-  
t i v e  ion m a s s  i n  atomic m a s s  units. 

Appendix B gives a more complete descr ip t ion  of the  t h r u s t  measuring de- 
vice,  t he  methods of ca l ib ra t ion ,  the  s ignif icance of the  t h r u s t  t a r g e t  
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measurement, and an  eva lua t ion  of t he  experimental accuracy of t h e  device, 
which i s  est imated t o  be f 2 O  percent  i n  determining %. 

The propel lan t  u t i l i z a t i o n  e f f i c i ency  w a s  ca l cu la t ed  from the product 

- JB %n % J - - -  
Jn Mp 

where Jn i s  t h e  n e u t r a l  beam current  and Mp i s  t h e  parent  ion  mass. 

Poss ib le  Modes of Molecular Fragmentation 

While an electron-bombardment th rus to r  can produce l a rge  beams of parent  
ions when atomic species  are u t i l i z e d  as propel lants ,  t h e  use of molecular com- 
pounds might lead t o  considerable fragmentation i n  the th rus to r  discharge 
(ref.  3). If even a s m a l l  f r a c t i o n  of the propel lan t  should be converted t o  
ions  of low m a s s  t o  charge r a t i o ,  e i t h e r  by fragmentation or mult iple  ioniza-  
t i on ,  t he  p o t e n t i a l  advantages a r i s i n g  from the  use of heavy molecules would 
soon disappear. It i s  therefore  of i n t e r e s t  t o  consider the  poss ib le  processes 
t h a t  might give r i s e  t o  such species,  Five such processes w i l l  be considered: 
w a l l  in te rac t ions ,  fragmentation due t o  excessive neu t r a l  p rope l lan t  tempera- 
ture,  fragmentation by primary electrons,  mult iple  impact by primary e lec t rons ,  
and mult iple  ionizat ion.  

W a l l  in te rac t ions .  - Impact of ions on t h e  w a l l s  of t he  ion iza t ion  chamber 
w a s  considered as a poss ib le  cause of molecular ion fragmentation. Reference 4 
ind ica tes  that the re  i s  a considerable mercury ion cur ren t  t o  the  chamber sur- 
f aces  from t h e  plasma i n  t h e  ion iza t ion  chamber. The approximate magnitude of 
t h i s  ion  cur ren t  i s  deduced from e lec t ron  cur ren ts  i n  ex te rna l  c i r c u i t r y  and 
from t h e  increased energy required t o  form each beam ion  as t h e  ion iza t ion  
chamber length  i s  increased. 

Because the bulk of t h e  plasma i s  within a few v o l t s  of t he  anode poten-. 
t i a l  ( ref .  ll), ions could f a l l  t o  the  screen, t h e  f i lament ,  and t h e  d i s t r i b -  
u to r  p l a t e  w i t h  energ ies  of t h e  order of t h e  ion-chamber p o t e n t i a l  difference.  
Ions formed i n  t h e  anode sheath could a l s o  s t r i k e  t h e  anode with energies  of a 
f e w  v o l t s  (ref.  11). 

Since t h e  bond energ ies  between atoms i n  a l a r g e  molecule are of t h e  or- 
der of 2 t o  5 e l ec t ron  v o l t s  (ref.  12), such impacts might provide a mechanism 
f o r  fragmentation i f  some of t h e  ion  k i n e t i c  energy becomes loca l ized  i n  a 
p a r t i c u l a r  molecular bond. 

Chemical i n t e rac t ions  between w a l l  sur faces  and both ions and molecules 
could a l s o  occur (refs.  3 and 13). Evaluation of such in t e rac t ions  could not 
be made, however, without da ta  on the  spec i f i c  molecule-surface system involved. 

Neutral  p rope l lan t  temperature. - Neutrals  i n  t h e  discharge w i l l  probably 
have temperatures t h a t  a r e  a t  least  as high as those of t he  m e t a l  surfaces  of 
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t he  ion iza t ion  chamber, which a r e  typ ica l ly  500° K ( r e f .  10). Neutral tempera- 
t u r e s  of t h i s  order might contr ibute  t o  molecular fragmentation. The electron-  
impact-fragmentation spec t ra  of some molecules., e spec ia l ly  the  parent mass 
f r ac t ions ,  have been found experimentally t o  be s t rongly dependent on the  tem- 
perature.  A s  shown i n  reference 14, the  parent m a s s  f r a c t i o n  decreased very 
rap id ly  with temperature f o r  some alkanes and cycloalkanes; however, the  d i s -  
t r i b u t i o n  of fragment ions i s  a f fec ted  t o  a l e s s e r  extent.  It w a s  a l s o  found 
t h a t  the  adverse e f f e c t  of temperature increases  with increasing s t r u c t u r a l  
complexity of the  organic molecules tes ted.  

I n  the  ion-chamber plasma, the molecules would undergo c o l l i s i o n s  with 
both thermal and primary e lec t rons ,  and t o  a much smaller extent ,  with ions and 
other  molecules. Such c o l l i s i o n s  would probably determine the  i n t e r n a l  v ibra-  
t i o n a l  energy of the  neutrals .  The e f f e c t s  of these  c o l l i s i o n s  on the  mole- 
cu les  u t i l i z e d  i n  t h e  program and the  temperature dependence of the mass spec- 
t r a  of these molecules a r e  unknown. These considerat ions preclude conclusions 
as t o  the  consequences of such c o l l i s i o n a l  processes i n  the  discharge. 

Pyrolysis  ( o r  d i s soc ia t ion  due t o  excessive i n t e r n a l  energy) i n  the  gas- 
eous s t a t e  probably would not play a major r o l e  i n  determining the  ul t imate  ion 
spectra  i n  a th rus to r  a t  normal operating conditions.  Even if  the  neu t r a l  t e m -  
perature  i s  assumed t o  be t h a t  of the fi lament,  t y p i c a l l y  2400' K ( r e f .  15), 
the  i n t e r n a l  energy, which could be loca l ized  i n  a p a r t i c u l a r  intermolecular 
bond, would be s m a l l  compared w i k h  the  intermolecular bond s t rengths  ( r e f .  1 2 ) .  

Primary . e lec t ron  impact. - It has been found f o r  many organic molecules 
t h a t  t h e  p&ent m a s s  f r ac t ion ,  or r a t i o  of parent t o  t o t a l  ions,  decreases very 
rap id ly  as the energy of the ionizing e lec t ron  increases  t o  approximately twice 
the  ion iza t ion  poten t ia l .  A t  higher e lec t ron  energies,  the  parent mass f r ac -  
t i o n  remains f a i r l y  constant. Reference 1 4  shows the  parent  m a s s  f r a c t i o n  as a 
funct ion of e lec t ron  energies  f o r  a nmber of organic molecules; reference 1 6  
shows the  fragmentation pa t t e rns  f o r  some of t h e  molecules used i n  t h i s  pro- 
gram. These data,  however, were taken i n  a m a s s  spectrometer r a the r  than i n  an 
e l e  c t r  on-b omb ardment t h r u s t  or. 

These references show a l s o  t h a t ,  a t  energies near the  ion iza t ion  poten- 
t i a l ,  the  ion iza t ion  e f f i c i e n c i e s  a r e  qui te  low and increase very rap id ly  with 
increasing e lec t ron  energy. For example, f o r  1,2,4,5-tetrabromobenzene (ion- 
i z a t i o n  po ten t i a l ,  10.7 v )  t he  ion iza t ion  e f f i c i ency  increased by a f a c t o r  of 
7 as the  ionizing e l ec t ron  energy increased from 14  t o  20 vol t s .  

Such da ta  demonstrate t h a t ,  t o  maximize the  parent  mass f r ac t ion ,  t he  
th rus to r  should be operated at a discharge voltage near the  ion iza t ion  poten- 
t i a l  of t he  molecule being u t i l i z e d ,  although considerat ions of ion iza t ion  e f -  
f i c i e n c i e s  ind ica te  t h a t  t h e  most e f f i c i e n t  t h rus to r  operat ion might be ob- 
ta ined  a t  somewhat higher discharge voltages. 

Multiple impact. - A ca l cu la t ion  from reference 3 ind ica t e s  t h a t  a mole- 
cule  might undergo as many as 200 i n e l a s t i c  c o l l i s i o n s  with primary e lec t rons  
before  being d i f fused  and/or acce lera ted  from the  ion iza t ion  chamber. 
mult iple  c o l l i s i o n s  might explain,  i n  p a r t ,  the  discrepancies  between e f f ec t ive  
ion masses ca lcu la ted  from da ta  taken w i t h  a mass spectrometer and those 
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evaluated from t h e  t h r u s t  of an  ion  beam from a discharge source with a given 
primary e l ec t ron  energy. 

Ions might a l s o  undergo c o l l i s i o n s  with thermal electrons.  Reference 3 
a lso  ind ica t e s  that electron-ion recombination ( a r i s i n g  pr imari ly  from three-  
body processes) with poss ib le  d i s soc ia t ion  might occur with a frequency compa- 
r ab le  t o  t h a t  f o r  ionization. 

Multiple ionizat ion.  - No evaluat ion of t h e  degree of mult iple  ion iza t ion  
Although multiple ion iza t ion  can be reduced to could be made i n  this  -program. 

a negl ig ib le  l e v e l  i n  a mercury discharge by operat ing a t  discharge vol tages  
less than 50 v o l t s  ( re f .  17), t h i s  may not be poss ib le  when a molecular com- 
pound i s  u t i l i z e d ,  unless  discharge vol tages  a r e  qu i t e  near the  molecular ion- 
i z a t i o n  poten t ia l .  

Se lec t ion  of Propel lan ts  

The following molecules were se lec ted  f o r  t e s t ing :  anthracene, pyrene, 
chrysene, 1,2,4, 5-tetrabromobenzeneY pentabromophenol, s tannic  iodide, s e l e -  
nium, and s i l i c o t u n g s t i c  acid. The chemical formulas and atomic weights of 
these  molecules a r e  shown i n  table I. 

Some of t h e  molecular compounds were se lec ted  on a b a s i s  of expected sta- 
A theore t -  b i l i t y  t o  e l ec t ron  impact and des i rab le  vapor pressure propert ies .  

i c a l  study (ref. 3) and references contained t h e r e i n  ind ica t e  t h a t  aromatic 
r i n g  compounds would o f f e r  t he  bes t  fragmentation r e s i s t ance  c h a r a c t e r i s t i c s  of 
any organic materials.  Five molecules se lec ted  f o r  t e s t i n g  were of t h i s  c lass .  
Three of these,  pyrene, chrysene, and anthracene, a r e  simple r ing  compcunds to 
which heavy atoms might be attached t o  provide la rge ,  heavy molecules i n  fu tu re  
invest igat ions.  The other two molecules of t h i s  c l a s s ,  pentabromophenol and 
1,2,4,5-tetrabromobenzene, a r e  halogenated benzene r i n g  compounds. A s  these  
compounds should be representa t ive  of the  most s t ab le  organic mater ia l s  under 
e l ec t ron  impact, no other  organic types were invest igated.  Three inorganic 
mater ia ls ,  s tannic  iodide,  selenium, and s i l i c o t u n g s t i c  acid,  were a l s o  i n -  
ves t iga ted  f o r  two reasons: F i r s t ,  very l i t t l e  i s  known of t he  fragmentation 
pa t t e rns  of inorganic mater ia ls ,  so  f o r  completeness it w a s  f e l t  t h a t  they 
should be t e s t e d  i n  the  program. Second, t he  th ree  compounds se lec ted  repre-  
sented a va r i e ty  of intermolecular bonding types and i n i t i a l  molecular mass and 
hence might allow some comparison within inorganic coqpounds. 

RESULTS AND DISCUSSION 

The experimental results presented here in  are divided i n t o  two categories .  
I n  the  f i r s t  sect ion,  da t a  on the  e f f ec t ive  ion mass f o r  the d i f f e r e n t  propel-  
l a n t s  under inves t iga t ion  a re  compared a t  representa t ive  operating conditions 
for the  electron-bombardment ion thrustor. I n  addi t ion,  t h rus to r  performance 
da ta  with the  d i f f e r e n t  propel lan ts  a r e  shown. I n  the  second section, t he  e f -  
f e c t  of a l t e r i n g  various th rus to r  operating parameters on the  e f f ec t ive  ion 
m a s s  of a s ingle  propel lant ,  s tannic  iodide,  i s  described. 
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Inves t iga t ion  of Different  Selected Propel lants  

N o  da ta  a re  presented f o r  chrysene because no r e l i a b l e  measure of t he  neu- 
t r a l  flow r a t e  could be obtained during any t e s t  of this coapound. Severe d i f -  
f i c u l t i e s  were encountered i n  cont ro l l ing  the  neu t r a l  p rope l lan t  flow r a t e  when 
the  e l e c t r i c  vaporizer w a s  u t i l i z e d  during t e s t s  of severa l  compounds. 

Also, no da ta  a re  shown f o r  s i l i co tungs t i c  ac id  f o r  two reasons: F i r s t ,  
during a l l  t e s t s  with t h i s  compound, the  discharge i n  the  ion  chamber quenched 
a f t e r  a r e l a t i v e l y  shor t  t h rus to r  operating period. Inspection of t he  vapor- 
i ze r ,  however, showed that most of t h e  propel lant  remained unused. The mea- 
sured neu t r a l  propel lant  flow rate agreed qu i t e  c lose ly  w i t h  t he  value t o  be 
expected from the  l o s s  of t he  waters of hydration f o r  t h i s  compound. Second, 
t he  experimentally determined values f o r  t he  e f f ec t ive  ion mass were very c lose  
t o  the  value t o  be expected f o r  s ing ly  charged water molecules or oxygen. A f -  
t e r  t h e  waters of hydration had apparently been removed from the  propel lant  i n  
the  vaporizer,  no ion beam could be obtained a t  vaporizer temperatures as high 
as 6700 K. 

Variation of e f f ec t ive  ion m a s s  wi th  ion  beam current. - Figure 4 shows 
the  va r i a t ion  of e f f ec t ive  ion mass, determined by t h r u s t  measurement, as a 
funct ion of ion beam current  f o r  f i v e  prape l lan ts :  s tannic  iodide,  1,2,4,5- 
tetrabromobenzene, anthracene, pentabromophenol, and selenium. Resul ts  f o r  
pyrene m e  not presented because da ta  were not obtained f o r  a rsnge of ion  beam 
ciflrent. The equivalent neu t r a l  beam current  J n  var ied  over a l a rge  range 
during t e s t s  with the  various propellants.  It must be noted t h a t  t h e  i o n  beam 
current  does not specify the  propel lant  u t i l i z a t i o n  e f f i c i ency  i n  the  case of 
molecular propel lan ts  (eq. ( 2 )  ). 

The da ta  show t h a t  t h e  e f f ec t ive  ion mass i s  much smaller than the  parent  
ion mass over t he  e n t i r e  range of ion beam current .  With t h e  exception of 
pentabromophenol and selenium, the  e f f ec t ive  ion mass of the  propel lan ts  in -  
ves t iga ted  remained f a i r l y  constant f o r  values of ion beam current  above about 
0.05 ampere; however, as the  ion  beam curren t  w a s  decreased below 0.05 ampere, 
t he  e f f ec t ive  ion mass tended t o  increase f o r  a l l  propel lants ,  with the  ex- 
cept ion of 1,2,4,5-tetrabromobenzene. The e f f ec t ive  ion  mass f o r  pentabromo- 
phenol and selenium increased near ly  l i n e a r l y  with decreasing ion  beam current.  

The da ta  f o r  s tannic  iodide exh ib i t  t he  l a r g e s t  ca lcu la ted  value f o r  ef- 
f ec t ive  ion m a s s  of all propel lan ts  studied. The e f f ec t ive  ion mass f o r  stan- 
n ic  iodide w a s  about 140 atomic mass u n i t s  a t  values of ion  current  above 
0.05 ampere and increased sharply a t  lower values of ion  beam current ,  becoming 
as l a rge  as 300 atomic m a s s  u n i t s  a t  about 0.01 ampere. During some t e s t s  w i t h  
s tannic  iodide, ion  beam curren ts  as high as 3 t imes the  neu t r a l  beam current  
were obtained f o r  t he  assumption of a s ingly  charged s tannic  iodide molecule. 
The r e s u l t s  seem t o  ind ica te  t h a t  many o f  t he  ions i n  the  beam were s ingly 
charged iodide atoms. 

The e f f ec t ive  ion mass of 1,2,4,5-tetrabromobenzene i s  qui te  near t he  
value f o r  a s ingly charged bromine atom ( B O  amu). The composition of t he  ion  
beam cannot be spec i f ied  from experimental t h r u s t  measurements because of t he  
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complexity of t he  organic chemicals s tudied and because a given value f o r  t he  
e f f ec t ive  ion mass may be produced from a v a r i e t y  of m a s s  spectra.  Additional 
da ta  showed t h a t  values f o r  ion beam current  approximately as la rge  as t h e  
equivalent n e u t r a l  beam current  could be obtained with lY2,4 ,5- te t rabro-  
benzene. The r a t i o  of e f f ec t ive  beam ion m a s s  to parent ion mass a t  t h i s  con- 
d i t i o n  w a s  approximately 1/5. 

After  a l l  t e s t s  with 1,2,4,5-tetrabromobenzeneJ as w a s  t h e  case following 
most runs with the organic compounds, a black deposi t  w a s  found on the  screen, 
the anode, and the  d i s t r i b u t o r  p la te .  Chemical t e s t s  indicated t h a t  t hese  de- 
p o s i t s  were carbon. 

The e f f ec t ive  ion  mass f o r  anthracene i s  near ly  constant f o r  values of ion 
beam current  above 0.030 ampere but  tends to increase as the  ion beam curren t  
i s  lowered below 0.030 ampere. The h ighes t  value f o r  t he  ion beam ckrrent  t h a t  
w a s  obtained with anthracene w a s  approximately equal to the  equivalent neu t r a l  
beam current.  

The e f f e c t i v e  ion mass f o r  pentabromophenol decreased l i n e a r l y  with in-  
creasing ion beam curren t  f o r  the  range of ion  beam current  t h a t  was  i nves t i -  
gated. After pentabromophenol was inves t iga ted  experimentally, da ta  were found 
( r e f .  1 6 )  which indicated t h a t  t he  compound d i s soc ia t e s  on heating. Values f o r  
the  ion  beam current  as high as 1.5 times the  neu t r a l  beam current  were ob- 
ta ined  i n  one t e s t  with pentabromophenol. 

The e f f ec t ive  ion mass f o r  selenium decrease5 s l i g h t l y  with increasing ion 
beam current  f o r  t h e  range inves t iga ted  and became approximately the  value f o r  
the  m a s s  of a s ing ly  charged selenium atom (79 amu) as the  ion beam curren t  w a s  
increased above a value of 0.100 ampere. Values f o r  t he  ion beam current  as 
high as two times the  neu t r a l  beam current  were obtained f o r  selenium f o r  the  
assumption of a s ingly  charged selenium molecule containing e ight  selenium 
atoms. Higher values f o r  the  ion beam current  might have been a t t a ined  were it 
not f o r  space-charge l imi t a t ions  imposed by the acce lera tor  gr ids .  During t h i s  
t e s t ,  the  e l e c t r i c  vaporizer could not be cont ro l led  so t h a t  the  da t a  presented 
represents  a very la rge  va r i a t ion  i n  neu t r a l  propel lant  flow ra t e s .  
t e s t  w a s  made because of the  t o x i c i t y  of selenium compounds. 

Only one 

Variation of e f f ec t ive  ion mass with fi lament emission current.  - Data 
presented i n  the  previous sect ion and a l l  other da ta  recorded a t  a-constant ion 
beam current  were taken by varying a given th rus to r  input parameter and ad jus t -  
ing the  fi lament emission current  to obtain the  desired ion beam current .  
Since the  fi lament emission current  represents  an important t h rus to r  input pa- 
rameter, t he  e f f e c t  of f i lament  emission current  on the  e f f ec t ive  ion m a s s  of 
the  various propel lan ts  w i l l  now be shown. 

Figures  5 and 6 show the  e f f ec t ive  ion mass of s tannic  iodide as a func- 
t i o n  of ion beam current  and fi lament emission current ,  respect ively,  a t  t h ree  
values of ion-chamber p o t e n t i a l  difference.  
mental e r ror ,  the  e f f e c t i v e  ion mass w a s  a f fec ted  pr imari ly  by the  value of 
emission or  beam current  and not by the  discharge voltage. 

It i s  seen t h a t ,  wi thin e q e r i -  
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The s i m i l a r i t y  i n  t h e  va r i a t ions  of e f f ec t ive  ion  m a s s  w i t h  the  emission 
and ion  beam curren ts  i s  a resul t  of a l i n e a r  r e l a t i o n  between these two param- 
e te rs  i n  the  range of m a s s  u t i l i z a t i o n  invest igated.  The va r i a t ion  of ion  beam 
current  with fi lament emission current ,  with a l l  other  t h rus to r  var iab les  he ld  
constant,  i s  shown f o r  s tannic  iodide i n  f igu re  7. The slope of t h i s  curve 
var ied with each propel lant .  

Figures 8 t o  10 show the v a r i a t i o n  i n  fi lament emission cur ren t  necessary 
t o  maintain a constant ion  beam current  w h i l e  varying ion-chamber p o t e n t i a l  
difference,  magnetic f ie ld  in t ens i ty ,  or  anode poten t ia l ,  respect ively.  The 
da ta  i n  f igu res  8 and 10 were obtained with s tannic  iodide,  and the  data i n  
f igu re  9 w e r e  obtained with lJ2,4,5-tetrabromobenzene; however, the r e s u l t s  i n  
these f igu res  are representa t ive  f o r  a l l  propel lan ts  invest igated.  It i s  ap- 
parent  from these  f i g u r e s  t h a t  it w a s  necessary t o  vary the fi lament emission 
current  by a f a c t o r  of about 2 i n  order t o  hold t h e  ion  beam current  constant 
while varying each of t h e  other  t h rus to r  input  parameters over I t s  operating 
range. 

Attempts t o  separate  the e f f e c t s  of t he  emission and ion  beam cur ren ts  
w e r e  unsuccessful. Ion-molecule in t e rac t ions  i n  -the ion beam should not be of 
primary importance i n  determining the ion m a s s  spectra. The fi lament emission 
current ,  r a t h e r  than the  ion beam current ,  w a s  then assumed t o  be the  inde- 
pendent parameter i n  determing t h e  e f f ec t ive  ion  m a s s .  

Reference 18 contains  da t a  on the e lec t ron  number dens i ty  of a mercury 
discharge i n  an  electron-bombardment thrus tor .  These data infiicate that  t h e  
ion-chamber discharge current  (approx. equal  t o  the  fi lament emission cu r ren t )  
inf luences both t h e  thermal and primary e l ec t ron  number d e n s i t i e s  an.2 that  
these  d e n s i t i e s  are s t rong funct ions of a x i a l  and r a d i a l  pos i t i ons  i n  the  ion- 
i za t ion  chamber. Also ,  t he  thermal e l ec t ron  dens i ty  w a s  found t o  drop near ly  
an order of magnitude when the  ion  acce lera t ing  po ten t i a l s  were applied,  while 
the  radial  dens i ty  of primary e lec t rons  w a s  less sens i t i ve  t o  v a r i a t i o n  of t h i s  
t h r u s t  o r  parameter . 

These data ind ica te  the  uncer ta in ty  i n  r e l a t i n g  t h e  fi lament emission cur- 
r e n t  t o  plasma conditions,  or t o  spec i f i c  molecule and/or ion-e lec t ran  inter- .  
actions.  

Variat ion of e f fec t ive  ion mass with ion-chamber p o t e n t i a l  difference.  - ~ _ _ _ _ _ _ _  
The e f f e c t  o f  ion-chamber.-potential d i f fe rence  on t h e  e f f ec t ive  ion  m a s s  of the 
heavy-molecular-weight propel lan ts  would appear important because the energy of 
ionizing e l ec t rons  has a predominant influence on the  mass spec t ra  of molecular 
ions a t  e l ec t ron  energies  near the  ion iza t ion  p o t e n t i a l  (ref.  14) .  

The da ta  shown i n  f igu re  11 were obtained a t  constant values of ion beam 
current ,  magnetic f i e l d  in t ens i ty ,  anode po ten t i a l ,  acce le ra tor  po ten t i a l ,  and 
neu t r a l  beam curren t  f o r  each propel lan t  studied. Fie e f f e c t i v e  ion  mass does 
nDt appear t o  be dependent on the  ion-chamber p o t e n t i a l  d i f fe rence  over the 
range of s t ab le  th rus to r  operation. The grea te r  part of t h e  va r i a t ion  i n  ef- 
f ec t ive  ion  m a s s ,  which w a s  noted f o r  most propel lants ,  f a l l s  wi th in  t h e  e s t i -  
mated experimental e r r o r  (about 520 percent )  f o r  t h e  e f f ec t ive  ion  m a s s  ob- 
ta ined  from the experimental t h r u s t  measurements. 
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Figure 1 2  shows the  e f f ec t ive  ion  m a s s  of s tannic  iodide as a funct ion of 
ion-chamber p o t e n t i a l  d i f fe rence  a t  two values of emission current.  It i s  seen 
that a small increase i n  e f f ec t ive  ion mass occurs as the  discharge voltage de- 
creases  i n  value, however, t he  v a r i a t i o n  i s  less than 25 percent. Data of t h i s  
ty-ge are l i m i t e d  by the  l a rge  f i lament  powers necessary t o  produce a constant 
emission cur ren t  a t  low values of discharge voltage. 

The range of ion-chamber p o t e n t i a l  d i f fe rence  over which the  th rus to r  
could be operated w a s  l imi t ed  by t h e  following f ac to r s .  
chamber p o t e n t i a l  d i f fe rence  (general ly  about 100 v) , t h rus to r  operation would 
become qu i t e  unstable,  causing a rc ing  and high-voltage breakdowns. 
ues (16 t o  20 v f o r  most propel lan ts ) ,  t h e  ion-chamber discharge would be 
quenched, and no measurable ion  beam current  could be observed. 
value f o r  t h e  ion-chamber p o t e n t i a l  d i f fe rence  a t  which the  discharge would be 
extinguished w i l l  be r e fe r r ed  t o  as the  quench p o t e n t i a l  f o r  a p a r t i c u l a r  pro- 
pe l lan t .  The experimental values f o r  t h e  quench p o t e n t i a l  of most of the  pro- 
p e l l a n t s  t e s t e d  are included i n  t a b l e  I. 
t i a l  and the  fragmentation p o t e n t i a l  when known ( r e f .  16) .  
t i a l  i s  approximately twice the  ion iza t ion  p o t e n t i a l  f o r  most of the  propel- 
l a n t s  investigated.  

A t  high values of ion- 

A t  low val-  

The minimum 

Also l i s t e d  a r e  the  ion iza t ion  poten- 
The quench poten- 

It would be d i f f i c u l t  t o  s t a t e  spec i f i c  reasons f o r  the  quenching of a 
molecular plasma, A t  values of e l ec t ron  energy approaching the  ion iza t ion  po- 
t e n t i a l ,  however, the  ion iza t ion  c ross  sec t ions  of a l l  t he  tes t  compounds a re  
g r e a t l y  reduced, and var ious energy l o s s  mechanisms (such as molecular exc i ta -  
t ion ,  bulk recombination, and ion  withdrawal from the  ion iza t ion  chamber) might 
predominate and lead  t o  quenching of t he  plasma. Such considerat ions ind ica te  
t h a t  it might be very d i f f i c u l t  to produce a plasma, which is capable of sup- 
plying desired ion  d e n s i t i e s  t o  the  acce lera tor  region, a t  discharge vol tages  
near t h e  molecular i on iza t ion  poten t ia l s .  

The i n a b i l i t y  t o  operate t h e  th rus to r  a t  low values of discharge voltage 
precludes any conclusions, however, as to t he  s ignif icance of t he  primary elec-  
t r o n  energy i n  molecular fragmentation i n  the  ion iza t ion  chamber. 

Variat ion of e f f ec t ive  ion mass with magnetic f i e l d  in tens i ty .  The e f f e c t  

The f i e l d  w a s  measured on the  

The magnetic f i e l d  i n t e n s i t y  has a r e l a t i v e l y  s m a l l  e f f e c t  on 

of magnetic f i e l d  i n t e n s i t y  on the  e f f ec t ive  ion  m a s s  of anthracene an3 
1,2,4,5-tetrabromobenzene i s  shown i n  f igu re  13. 
axis of t he  t h r u s t o r  i n  t h e  plane of t he  screen grid.  Only the  emission CUT- 
r e n t  was  varied. 
t he  e f f ec t ive  ion m a s s  over t h e  range inves t iga ted  ( 2 1  to 64 gauss).  

Variat ion of e f f e c t i v e  _ _ _  ion mass I~ with anode po ten t i a l .  - The e f f ec t  of 
anode po ten t i a l  on the  e f f ec t ive  ion mass for-stan& iodide,  1 ,2 ,4 ,5- te t ra-  - 
bromobenzene, pentabromophenol, and pyrene i s  shown i n  f igu re  14. I n  general ,  
the  e f f ec t ive  ion m a s s  w a s  near ly  independent of anode po ten t i a l .  Although the  
e f f ec t ive  ion  mass of pentabromophenol and pyrene appear to increase with anode 
po ten t i a l ,  the  va r i a t ion  i s  within experimental e r r o r  and i s  not considered 
conclusive. The da ta  were recorded a t  a constant r a t i o  of net  to t o t a l  accel-  
e r a t ing  vol tage of 0.8 f o r  a l l  four  propellants.  I n  addi t ion,  t he  ion-chamber 
p o t e n t i a l  difference,  the  ion  beam current ,  t he  magnetic f i e l d  in t ens i ty ,  and 
t h e  neu t r a l  beam current  were held constant f o r  each propel lant .  
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Variation of e f f ec t ive  ion  m a s s  with neu t r a l  beam current.  - . I n  order t o  
vary the neu t r a l  n;;nber dens i ty  i n  t h e  discharge, neu t r a l  propel lant  flow r a t e s  
were var ied f o r  th ree  propel lan ts  , pentabromophenol , 1;2 J 4,5-tetrabromobenzene, 
and selenium. 

Figure 15 shows the  e f f ec t ive  ion mass of 1,2,4,5-tetrabromobenzene as a 
funct ion of ion current  f o r  two neu t r a l  flow r a t e s ,  which d i f f e r e d  by a f ac to r  
of 1.5. These da ta  were taken a t  constant anode voltage and magnetic f i e l d ;  
however, t he  discharge voltage d i f f e red  by 10 v o l t s  i n  t h e  two t e s t s .  Fig- 
ure 16  shows the  e f fec t ive  ion m a s s  as a funct ion of ion-chamber p o t e n t i a l  d i f -  
ference f o r  pentabromophenol f o r  two flow r a t e s ,  which d i f f e red  by a f a c t o r  of 
4, while t he  ion cur ren ts  var ied by a f a c t o r  of approximately 3.5. These da ta  
were taken a t  constant magnetic f i e l d  and anode poten t ia l .  

I n  both cases  it i s  seen t h a t  t he  e f f ec t ive  ion masses were s l i g h t l y  high- 
e r  with increased neut ra l  flow; however, as the  da ta  f o r  each propel lant  were 
obtained i n  separate t e s t s ,  comparisons a r e  somewhat uncertain. 

During the  t e s t  with selenium, i n  which a very wide range of n e u t r a l  beam 
curren ts  w a s  inadvertent ly  obtained, no Signif icant  va r i a t ion  i n  e f f ec t ive  ion 
m a s s  w a s  noted. 

Th-rustor e f f i c i e n c i e s  with se lec ted  propellants.  - Th? most s ign i f icant  
po ten t i a l  advantage i n  the use of heavy molecules as a propel lant  i s  i n  in-  
creased th rus to r  efficiency. It i s  of i n t e r e s t  t o  show the  e f f e c t  of t h e  var- 
ious t e s t  p rope l lan ts  on th rus to r  performance. The r e s u l t s  a r e  discussed i n  
t h e  following order: p rope l lan t  u t i l i z a t i o n  eff ic iency,  t h rus to r  power e f f i -  
ciency, and ove ra l l  t h rus to r  eff ic iency.  

Data presented i n  t h i s  repor t  have shown t h a t  t he  e f f ec t ive  ion m a s s  of 
a l l  the  propel lan ts  s tudied i s  much lower than the  parent  mass. On the  other  
hand, ion beam curren ts  l a r g e r  than the  neu t r a l  beam current  could be obtained 
f o r  some of the  propel lants ,  which could be a r e s u l t  of e i t h e r  molecular f rag-  
mentation or mult iple  ionizat ion.  Figure 1 7  shows the normalized e f f ec t ive  ion 
mass as a funct ion of t he  normalized ion beam current.  Lines of constant pro- 
pe l l an t  u t i l i z a t i o n  e f f i c i ency  (which can be seen t o  be hyperbolas from 
eq. ( 2 ) )  a r e  a l s o  included i n  the  f igure.  
p rope l lan t  u t i l i z a t i o n  e f f ic iency  never exceeded 50 p-rcent f o r  any propel lant  
studied. 
e r  values f o r  t h e  e f f ec t ive  ion  m a s s  were obtained) r e su l t ed  i n  a subs t an t i a l  
reduct ion of the  propel lant  u t i l i z a t i o n  eff ic iency.  I n  addi t ion,  it w a s  gen- 
e r a l l y  necessary t o  operate a t  values of Jg/Jn 
p e l l a n t  u t i l i z a t i o n  e f f i c i e n c i e s  g rea t e r  than 20 percent. 

It i s  shown i n  f igu re  1 7  t h a t  t he  

Operation of t he  th rus to r  a t  low l e v e l s  of JB/J, ( a t  which the  high- 

g rea t e r  than 1 to obtain pro- 

The th rus to r  power e f f ic iency  ( r a t i o  of beam power t o  power input )  of t he  
electron-bombardment th rus to r  w a s  ca lcu la ted  i n  the  same manner as described 
i n  reference 19. The va r i a t ion  of t h rus to r  power e f f ic iency  with ion  beam cur- 
r e n t  i s  shown f o r  s tannic  iodide i n  f i g u r e  18. Thrustor power 
t o  approach values of 60 t o  70  percent as the  ion  beam curren t  
As  t he  ion beam current  i s  reduced t o  values below about 0.050 
th rus to r  power e f f i c i ency  drops off  sharply t o  values below 40 

e f f i c i ency  tends 
is  increased. 
ampere, t he  
percent. These 
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data  a r e  representa t ive  f o r  aU propel lan ts  studied. 
t h a t  t he  highest  e f f ec t ive  ion masses a r e  obtained a t  t h e  expense of low 
th rus to r  power ef f icien6y. 

It i s  evident,  therefore ,  

The ove ra l l  t h r u s t o r  e f f ic iency  i s  the  product of t he  propel lant  u t i l i z a -  
t i o n  e f f i c i ency  and the  th rus to r  power eff ic iency.  The highest  value obtained 
f o r  ove ra l l  t h rus to r  e f f ic iency  w a s  about 35 percent. Operation of t he  t h r u s t -  
or a t  conditions which lead  t o  m a x i ”  values  f o r  t he  e f f e c t i v e  ion  mass r e -  
su l t ed  i n  ove ra l l  t h r u s t o r  e f f i c i e n c i e s  of l e s s  than 10 percent f o r  a l l  pro- 
pe l lan ts .  For example, a t  an ion  beam current  of 0.020 ampere, t he  ove ra l l  
t h rus to r  e f f ic iency  w a s  about 4 percent f o r  s tannic  iodide and about 8 percent 
f o r  anthracene. 

Variat ion of Thrustor Operating Parameters 

m e  da ta  of t he  previous sect ions ind ica te  t h a t  production of ion beams 
of heavy molecules i n  a 10-centimeter-diameter electron-bombardment th rus to r  
could be achieved only a t  extremely low l e v e l s  of o v e r a l l  t h rus to r  eff ic iency.  
Four sources of moleculw fragmentation as wel l  as mult iple  ion iza t ion  w e r e  
considered as poss ib le  explanations of the  i n a b i l i t y  t o  obtain heavy molecular 
ions  i n  quant i ty  from a 10-centimeter-diameter electron-bombardment thrus tor .  
Besides mult iple  ionizat ion,  these  phenomena a re  fragmentation due t o  w a l l  
in te rac t ions ,  excessive neu t r a l  propel lant  temperature, excessive primary elec-  
t r o n  energy, and mult iple  ion  and/or molecule-electron impact. 
va r i a t ion  of both physical  a d  e l e c t r i c a l  t h r u s t o r  parameters w a s  ca r r i ed  out 
to discover i f  any of these  postulated d i f f i c u l t i e s  could be i d e n t i f i e d  and 
perhaps a l lev ia ted .  

A program of 

Stannic iodide w a s  used f o r  most of the  t e s t s  f o r  severa l  reasons. It had 
the  l a r g e s t  e f f ec t ive  ion mass of any molecule t e s t ed ,  i t s  s t r u c t u r a l  simplic- 
i t y  might f a c i l i t a t e  i n t e r p r e t a t i o n  of the  data,  and l a s t l y ,  a steam vaporizer 
could be u t i l i zed ,  which allowed more r e l i a b l e  masurements of the  neu t r a l  pro- 
pe l l an t  flow r a t e s  than d id  the use of an e l e c t r i c  vaporizer. 

Biased d i s t r i b u t o r  p l a t e .  - A b i a s  w a s  appl ied to the  d i s t r i b u t o r  p l a t e  
with respect  to t he  fi lament and the  screen t o  determine the  e f f e c t  of ions 
in t e rac t ing  with the  surfaces  of the  ion iza t ion  chamber. Three propel lan ts  
were t e s t e d  with the  biased d i s t r i b u t o r :  anthracene, 1,2,4,5-tetrabromo- 
benzene, and pentabromophenol. The r e s u l t  of t h i s  va r i a t ion  i s  seen f o r  
1,2,4,5-tetrabromobenzene i n  f igu re  19, where the  b i a s  i s  pos i t i ve  with respect  
to t he  screen. It i s  seen t h a t  th?  pos i t i ve  b i a s  voltage had l i t t l e  e f f e c t  on 
the e f f ec t ive  ion mass. Additional data ,  not p lo t ted ,  indicated t h a t  negative 
b i a s  vol tages  ( t o  20 v )  a l s o  produced no v a r i a t i o n  i n  e f f ec t ive  ion mass f o r  
lY2,4,5-tetrabromobenzene. With anthracene and pentabromophenol no va r i a t ion  
i n  t h r u s t  w a s  recorded over a 0- t o  i-60-volt range of d i s t r i b u t o r  b i a s  f o r  
e i t h e r  molecule. 

The complexity of plasma in t e rac t ions  makes it d i f f i c u l t  to estimate the  
degree to which b ias ing  the  d i s t r i b u t o r  p l a t e  would a f f e c t  ion-wall i n t e rac -  
t ions .  Ion-wall c o l l i s i o n s  could occur a t  t h e  screen, t he  anode, t he  outer  
chamber surface,  and the  fi lament regard less  of the  d i s t r i b u t o r  b ias .  The 
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e f f e c t  of ions s t r i k i n g  the  f i l a m ? n t  i s  probably s:?lall, however, since the  
r a t i o  of fi lament t o  ion iza t ion  chamber surfaces i s  usual ly  about 0.01. I n  
addi t ion,  f i e l d s  i n  t he  discharge chamber ( r e f .  11) and near the  acce lera t ion  
region ( r e f .  10) would be such t o  reduce ion-wall i n t e rac t ions  at the  anode and 
the  screen, respect ively.  Such considerat ions then ind ica te  t h a t  the  d i s t r i b -  
u tor  p l a t e  would be a major source of ion-wall in te rac t ions .  The f a c t  t h a t  t he  
e f f ec t ive  ion m a s s  w a s  not dependent upon d i s t r i b u t o r  b i a s  does ind ica te  t h a t  
ion-wall i n t e rac t ions  a r e  probably not a primary source of fragmentation i n  
the  discharge. 

Variat ion of fi lament emit t ing area.  - A s  shown previously,  it w a s  i m -  
possible  t o  obtain measurable beam curren ts  a t  discharge vol tages  near the  ion- 
i z a t i o n  p o t e n t i a l  of any of the  molecules. The da ta  i n  t a b l e  I show t h a t ,  i n  
most cases, the  minimum operating p o t e n t i a l  w a s  about twice the  ion iza t ion  po- 
t e n t i a l ,  where da ta  allowed d i r e c t  comparison. 

Several  types of f i laments  were t e s t e d  i n  a 10-centimeter-diameter t h r u s t -  
or  with stannic iodide t o  determine whether an increase i n  t h e  emit t ing a rea  of 
the  fi lament would allow lower discharge vol tages  t o  be u t i l i zed .  Two tantalum 
filaments,  one a ribbon design and the  other  a s ing le  wire, t h a t  d i f f e red  i n  
surface a rea  by a f a c t o r  of 9 were t e s t e d  under otherwise almost i d e n t i c a l  
t h rus to r  conditions. The neu t r a l  propel lant  flows d i f f e red  by 1 5  percent. 
There w a s  no e f fec t ,  wi thin experimental e r ro r ,  i n  the  minimum operating vo l t -  
ages t h a t  could be achieved, and no subs t an t i a l  d i f fe rence  w a s  noted i n  the  
e f f ec t ive  ion masses obtained with the  two fi laments.  The quench po ten t i a l s  i n  
these  t e s t s  were measured and found t o  be about 3 v o l t s  lower f o r  the fi lament 
with the  smaller emit t ing area.  For any molecule during a given t e s t ,  quench 
po ten t i a l s  would vary by as much as 2 vo l t s ,  so t h a t  such measurements must be 
considered somewhat inconclusive. Filaments with the  same r a t i o  of emitt ing 
areas  were t e s t e d  i n  a 10-centimeter-diameter t h rus to r  with a 2.5-centimeter- 
long ion iza t ion  chamber with s i m i l a r  r e s u l t s .  Neither t h e  quench po ten t i a l s  
nor the  e f f ec t ive  ion m a s s  seemed t o  be a f fec ted  by the  f i lament  emitt ing area.  

Thrustor operation with a barium oxide coated cathode ( r e f .  20) proved 
unsuccessful, as the  propel lant ,  stannic iodide, apparently poisoned the  
cathode. 

Variation of neu t ra l  density.  - The e f f e c t  of increased neu t r a l  dens i ty  
w a s  inves t iga ted  u t i l i z i n g  a 5-centimeter-diameter th rus tor .  The neu t r a l  pro- 
pe l l an t  flow r a t e  of s tannic  iodide w a s  approximately the  same as t h a t  f o r  the  
t e s t s  with the 10-centimeter-diameter th rus tor .  I n  two t e s t s  with the  s m a l l  
t h rus to r ,  the  quench p o t e n t i a l s  were 18 and 20 vo l t s ,  which compare with the  
1 7 -  and 20-volt quench p o t e n t i a l s  of the 10-centimeter-diameter t h rus to r .  The 
e f f ec t ive  ion masses measured were very s i m i l a r  t o  those obtained with the  10- 
centimeter-diameter th rus tor .  

Variation of ion iza t ion  chamber length. - I n  order t o  reduce the  number of 
molecular and/or ion-electron c o l l i s i o n s  within t h e  ion iza t ion  chamber, an 
attempt w a s  made t o  decrease the  molecular residence time. 

Ioniza t ion  chamber lengths  of 9 . 2 ,  5, and 2 .5  centimeters were t e s t e d  w i t h  
s tannic  iodide as the  propel lant .  Shortening the  ion iza t ion  chamber also 



served t o  reduce t h e  a rea  ava i lab le  f o r  ion-wall  in te rac t ions .  

Figure 20 shows the  e f f ec t ive  ion  mass f o r  t h e  th ree  chamber lengths  as a 
func t ion  of t h rus to r  ion  current.  Two s t rands of 0.025-centimeter-diameter 
tantalum wire were used as a fi lament i n  the  9.2-centimeter-long ion iza t ion  
chamber, while ribbon f i laments  were u t i l i z e d  i n  t h e  o ther  two t e s t s .  
t r a l  propel lant  flow rates were equal within about 10 percent.  It i s  seen 
t h a t  t he  ion iza t ion  chamber length had l i t t l e  e f f e c t  on the  e f f ec t ive  ion mass 
of s tannic  iodide.  

The neu- 

Several  d i f f i c u l t i e s  w e r e  experienced i n  t e s t i n g  t h e  th rus to r  with the  
2.5-centimeter-long ion iza t ion  chamber. Quite often,  t he  discharge would 
quench as t h e  ne t  acce lera t ing  p o t e n t i a l  w a s  increased. Quench p o t e n t i a l s  were 
very high with t h i s  t h rus to r  configuration. During c a l i b r a t i o n  t e s t s  with m e r -  
cury, the  minimum vol tage a t  which the  t h r u s t o r  could be operated w a s  more than 
twice the  quench p o t e n t i a l s  f o r  mercury recorded when the  two longer ion iza t ion  
chambers were used. Also, during the  c a l i b r a t i o n  tests, it w a s  noted t h a t  t he  
use of the  short  ion iza t ion  chamber l imi t ed  the  maximum achievable propel lant  
u t i l i z a t i o n  e f f i c i ency  t o  about 60 percent. Over 95  percent u t i l i z a t i o n  e f f i -  
ciency could be obtained i n  the  other  chamber configurat ions with mercury. 

The operat ional  d i f f i c u l t i e s  incurred with the  short  chamber ind ica te  t h a t  
fu r the r  shortening of t he  ion iza t ion  chamber would not allow a discharge to 
occur. I n  addi t ion,  t h e  frequent  quenching of t he  discharge when the  acceler-  
a t i n g  p o t e n t i a l s  were increased might ind ica te  t h a t  it would be d i f f i c u l t  to 
ion ize  required quan t i t i e s  of molecules by e l ec t ron  bombardment i n  a strong ion 
withdrawal f i e l d .  The reduct ions i n  propel lant  u t i l i z a t i o n  e f f i c i e n c i e s  r e -  
su l t i ng  from use of a shor t  ion iza t ion  chamber ind ica te  t h a t  it may not be pos- 
s i b l e  to combine e f f i c i e n t  ion iza t ion  with short  molecular residence t imes 
without subs t an t i a l  l o s s e s  i n  th rus to r  eff ic iency.  

Variation of propel lan t  feed. - A side-feed electron-bombardment th rus to r  
(unpublished da ta  obtained by P a 3  D. Reader of Lewis) w a s  a l so  used i n  order 
to a f f e c t  t he  molecular residence times. This t h rus to r  d i f f e r s  i n  design from 
a l l  o thers  t e s t e d  i n  t h a t  the  propel lant  i s  introduced i n t o  the  ion iza t ion  
chamber approximately r a d i a l l y  from the  anode s w f a c e  between 2 . 5  and 5 cen t i -  
meters from t h e  upstream face  of the  screen. The r e s u l t s  of t h i s  t e s t  a r e  
shown i n  f igure  21. It i s  seen t h a t  the  e f f ec t ive  ions mass decreased l i n e a r l y  
with the  ion current.  The r e s u l t s  a t  low ion  cur ren ts  a r e  similar t o  most 
o ther  t e s t s  with s tannic  iodide. 

A s  no s ign i f i can t  improvements i n  the  e f f ec t ive  ion m a s s  were noted with 
any of t he  th rus to r  geometric or e l e c t r i c a l  var ia t ions ,  the  ove ra l l  t h rus to r  
e f f i c i enc ie s  were not subs t an t i a l ly  d i f f e r e n t  from those found i n  the  f i r s t  
phase of t he  study. 

CONCLUDING REMARKS 

The r e s u l t s  of t h i s  inves t iga t ion  ind ica te  t h a t  an electron-bombardment 
th rus to r  of t he  type present ly  used f o r  ion iza t ion  of atomic species  cannot be 
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u t i l i z e d  t o  obtain heavy molecular ions i n  quant i ty  a t  acceptable l e v e l s  of 
t h rus to r  eff ic iency.  

A s  no molecule had an e f f ec t ive  ion m a s s  g rea t e r  
t h e  parent ion, no usefu l  comparison of the  t e s t  prop 
b a s i s  of molecular composition or interbonding type. 

than one-half the  m a s s  of 
l l a n t s  could be made on a 

Variation of a number of operat ional  parameters n a 10-centimeter- 
diameter electron-bombardment th rus to r  indicated t h a t  only the  fi lament emis- 
s ion current  s t rongly a f fec ted  t h e  e f f ec t ive  ion m a s s  of t h e  ion beam over the 
l e v e l s  of t h rus to r  parameters investigated.  Because of the  complicated in t e r -  
r e l a t i o n  between emission current  and plasma conditions,  however, no attempt 
w a s  made t o  descr ibe t h i s  dependence i n  terms of spec i f ic  molecular i n t e r -  
a c t  ions. 

Variation of a number of t h rus to r  parameters had no s ign i f i can t  e f f e c t  on 
the  e f f ec t ive  ion m a s s  of t h e  th rus to r  ion beam. A t t e m p t s  t o  reduce the d i s -  
charge voltage a t  which ion beams could be produced, by varying fi lament e m i t -  
t i n g  a rea  and increasing the dens i ty  of neut ra l s  i n  t h e ' i o n i z a t i o n  chamber, 
were unsuccessful. The f a c t  t h a t  the  e f f ec t ive  ion mass i s  not dependent upon 
the  d i s t r i b u t o r  p l a t e  b i a s  and ion iza t ion  chamber surface a rea  ind ica tes  t h a t  
ion-wall i n t e rac t ions  a r e  not of primary importance i n  the  determination of t he  
ion beam m a s s  spectra.  The attempt t o  reduce the  residence t imes of the  molec- 
ular and ion ic  species,  -both by shortening the  ion iza t ion  chamber and by in t ro -  
ducing t h e  propel lant  near t he  screen, l e d  t o  no s ign i f i can t  improvement i n  
e f f ec t ive  ion mass and, i n  t h e  case of t he  shor tes t  ion iza t ion  chamber, l e d  t o  
la rge  reductions of t h rus to r  eff ic iency.  

Experiments d id  ind ica te ,  however, t h a t  molecule and/or ion  in t e rac t ions  
with primary e lec t rons  a r e  the major f a c t o r  i n  the  molecular fragmentation pro- 
cess. The complicated r e l a t i o n  between the  various th rus to r  parameters and the  
molecular plasma, t he  r e l a t i v e l y  crude measuring technique, and the  i n a b i l i t y  
t o  influence t o  a s ign i f i can t  extent  the e f f ec t ive  ion m a s s  with va r i a t ions  i n  
th rus to r  e l e c t r i c a l  and geometric parameters (with the  exception of fi lament 
emission cu r ren t )  precluded exact i d e n t i f i c a t i o n  of the  primary causes of mole- 
c ular fragment a t  ion. 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, Apr i l  30, 1964 
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APPENDIX A 

SYMBOLS 

B 

c 

F 

J 

L 

M 

v 
nv 
Y 

q U  

magnetic f i e l d  in t ens i ty ,  gauss 

constant 1.44xI-0- 
4 newton 

ampJamuJv 

t h r u s t  newtons 

current ,  amp 

ioniza t ion  chamber length,  em 

m a s s ,  amu 

po ten t i a l ,  v 

po ten t i a l  difference,  v 

sput te r ing  y i e ld ,  atoms/ion 

propel lant  u t i l i z a t i o n  e f f i c i ency  

Sub s c r i p t s  : 

A 

B 

E 

F 

I 

m 

mag 

n 

P 

S 

SD 

acce lera tor  

ion beam 

emi s sion 

fi lament 

anode 

e f f ec t ive  ion 

magnet 

neut ra l  beam 

parent 

index 

screen-di st  r i b u t  or 
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APPENDIX B 

THRUST TARGEZ 

The t h r u s t  t a r g e t s  used i n  the  experiment were fabr ica ted  of e i t h e r  s t a in -  
l e s s  s t e e l  or  t i t an ium sheet 0.025 and 0.05 mill imeter th ick ,  respect ively.  
They were suspended by four 0.125-millimeter-diameter tantalum wires t h a t  were 
approximately 58 centimeters long. The masses of both the  t i tanium and s t a in -  
less s t e e l  t a r g e t s  w e r e  approximately 70 grams. The t a r g e t s  were hung by cen- 
t e r i n g  the  cone on the  longi tudina l  a x i s  of t he  thrus tor .  

I n i t i a l l y ,  an e l e c t r i c  transducer w a s  used t o  record t h r u s t  t a r g e t  de- 
f l ec t ion .  Many d i f f i c u l t i e s  were experienced with t h i s  measuring technique. 
An o p t i c a l  cathetometer w a s  then used t o  measure the  t a r g e t  movement, and use 
of t h i s  device reduced experimental "down t i m e "  and provided more r e l i a b l e  r e -  
sults. All data presented i n  t h i s  repor t  were taken with t h e  o p t i c a l  cathe- 
t omet e r  . 

Analysis of Data 

I n  t h i s  sect ion a b r i e f  ana lys i s  i s  given t o  de l inea te  the  s ignif icance of 
the  da ta  taken with the  t h r u s t  t a rge t .  

The t o t a l  t h r u s t  of an ion beam is, i n  the  case of a s ing le  ion  species,  

F = c-,& J~JM 

The p a r t i c l e  mass, which may be ca lcu la ted  from a t h r u s t  measurement and which 
w i l l  be r e fe r r ed  t o  as the  e f f ec t ive  ion m a s s ,  i s  

I n  the  case of fragmentation, however, when s ingle  ion iza t ion  i s  assumed, the  
t h r u s t  of an ion beam i s  

F =  

where Js i s  the  ion  cur ren t  i n  
ment of mass Ms i n  atomic m a s s  
of M, present  i n  the  ion beam. 

S 

amperes associated 
uni ts .  The index 
The e f f ec t ive  ion 

\2 

with a p a r t i c u l a r  ion f rag-  
s ranges over a l l  values 
mass i s  
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since 

JB = Js (334) 
S 

When t h e  fragmentation exis ts ,  t he  ion  mass, ca lcu la ted  from a t h r u s t  
measurement, i s  t h e  square of the  average square root of the  ion masses. It 
can be shown t h a t  the  measured e f f ec t ive  ion mass i s  equal to or l e s s  than the  
mean m a s s  of t he  ionized fragments i n  t h e  th rus to r  ion beam. It w i l l  be as- 
sumed, however, for purposes of ca lcu la t ion  of m a s s  u t i l i z a t i o n  e f f i c i enc ie s ,  
t h a t  t he  e f f e c t i v e  ion mass i s  equal to t he  mean mass of t he  fragment ions. 
This approximation i s  probably adequate. For example, ca lcu la t ing  a mean mass 
and an e f f ec t ive  ion m a s s  from a m a s s  spectrum of anthracene ( r e f .  3) r e su l t ed  
i n  a d i f fe rence  of only 5 percent. 

Cal ibrat ion Techniques 

A mercury ion  beam w a s  used t o  c a l i b r a t e  t he  t h r u s t  t a r g e t  f o r  most tests. 
The th rus to r ,  with geometric conditions exact ly  l i k e  those t o  be used i n  the  
following heavy-molecule t e s t s ,  w a s  operated over a v a r i e t y  of beam l e v e l s  and 
impulses. 

It w a s  assumed t h a t  t he  mercury ion beam represents  a known th rus t .  Care 
w a s  taken to reduce mult iple  ion iza t ion  by operating a t  discharge vol tages  l e s s  
than 50 vo l t s .  A curve of t h r u s t  as a funct ion of t a r g e t  de f l ec t ion  may then  
be obtained with the  mercury beam as a known th rus t .  Qui te  l i n e a r  and repea t -  
ab le  r e s u l t s  were obtained with t h i s  method. Figure 22 shows a t y p i c a l  c a l i -  
b ra t ion  curve. 
noted. At l a rge  beam currents ,  always grea te r  than 100 milliamperes, there  
appears to be considerable beam divergence, although the  current  a t  which t h i s  
s e t s  i n  i s  qui te  dependent on the net  acce lera t ing  po ten t i a l .  Nonl inear i t ies  
a l so  appear a t  low beam currents ,  usual ly  l e s s  than 15 milliamperes. At small 
t h r u s t  l e v e l s  e r r o r s  i n  the  da ta  such as leakage currents ,  meter u n r e l i a b i l i -  
t i e s ,  and e r r o r  i n  measuring the def lec t ion  could become qui te  s ign i f i can t  i n  
the  t h r u s t  ca lcu la t ion .  

I n  most ca l ib ra t ion  curves, two regions of nonl inear i ty  were 

The mercury beam c a l i b r a t i o n  then provided a l i n e a r  repeatable  c a l i b r a t i o n  
over a l a rge  range of beam currents.  It i s  bel ieved t h a t  such a t a r g e t  allows 
a d i r e c t  comparison of t h r u s t s  between a mercury and a heavy-molecule ion  beam. 

While the  mercury ion beam ca l ib ra t ion  should allow a good comparison of 
t h r u s t  it i s  of i n t e r e s t  to evaluate the  accuracy of t h i s  ca l ib ra t ion  technique 
i n  providing r e l i a b l e  ab so lu te  t h r u s t  measurements. 

A pul ley arrangement w a s  used to determine absolute  ca l ib ra t ion  curves. A 
number of weights were at tached by a s t r i n g  to t he  t a r g e t  and suspended over a 
pulley. 
when compared with the  weights used i n  the  ca l ibra t ion .  This method provides a 
d i r e c t  measurement of de f l ec t ion  as a funct ion of t h rus t .  Figure 22 shows such 
a curve taken with the  same t h r u s t  t a r g e t  used f o r  t he  mercury ion beam 

The f r i c t i o n  fo rces  were roughly measured and found to be negl ig ib le  
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c a l i b r a t i o n  curve of t h a t  f igure.  It i s  seen t h a t  t h e  two ca l ib ra t ion  tech- 
niques gave qui te  s i m i l a r  r e s u l t s  i n  the  l i n e a r  region of t he  beam ca l ibra t ion .  

The use of simple pendulum equations provides another method f o r  obtaining 
an absolute  c a l i b r a t i o n  ( r e f .  IO). 
length of the  cone pendulum e i t h e r  by measuring the  v e r t i c a l  suspension or 
period of o s c i l l a t i o n  of the  t h r u s t  t a rge t .  A curve of t h r u s t  as a funct ion of 
de f l ec t ion  can then be calculated.  Because of t he  long f a c i l i t y  shutdown cycle 
necessary t o  obtain an accurate  measurement of t he  period and the  uncertainty 
i n  the  s ignif icance of a d i r e c t  measurement of t h e  v e r t i c a l  suspension d i s -  
tance,  t he  pul ley  system w a s  used t o  determine the  absolute t h r u s t  ca l ibra t ion .  

A n  es t imate  can be made of t he  e f f ec t ive  

Errors  i n  Thrust Measurement 

Three sources of e r r o r  i n  the  t h r u s t  measurement. a r e  beam spreading, sput- 
t e r i n g  phenomena, and inaccuracies  i n  use of t he  o p t i c a l  cathetometer. 

Beam spreading. - D a t a  were taken with an impingement current  probe 
( r e f .  21 )  t o  determine t h e  degree of beam spreading. These da ta  indicated 
t h a t ,  i n  t he  range of ion cur ren ts  used i n  t h i s  program, the  amount of t he  ion 
beam s t r i k i n g  the  t h r u s t  t a r g e t  was a t  l e a s t  97 percent of the  t o t a l  ion cur- 
rent .  

Sput ter ing phenomena. - A n  attempt w a s  made t o  estimate the  e f f e c t  of 
sput te r ing  on the  t h r u s t  measurement by both a rough t h e o r e t i c a l  ca lcu la t ion  
and an experimental measurement. 

I n  order t o  determine the  t h r u s t  t h a t  sput tered t i tanium might produce, it 
Y (atoms/ion) and the  ener- 

From an ex t rapola t ion  of t he  data  of reference 22 
i s  necessary t o  es t imate  both the  sput te r ing  y i e ld  
gy of the sput tered ions.  
concerning the  energy of sput tered tungsten atoms due t o  incident s ingly 
charged mercury ions of k i n e t i c  energies up t o  900 e lec t ron  vo l t s ,  it i s  e s t i -  
mated that  the  maximum energy of sput tered t i t an ium atoms would be approxi- 
mately 50 e l ec t ron  v o l t s  a t  incident ion energies  of about 4000 vol ts .  

It i s  d i f f i c u l t  to est imate  the  y i e ld  f o r  t h e  experimental s i tua t ion .  The 
angle of incidence i s  15O, and it w i l l  be assumed t h a t  ion bombardment a t  t h i s  
angle w i l l  increase t h e  y i e ld  by a f a c t o r  of' 2 over normal incidence ( r e f .  23 ) .  
Although no da ta  were ava i lab le  f o r  t he  case of t i tanium sput tered by mercury 
ions i n  the  energy range of i n t e r e s t ,  da ta  from reference 9 l e d  to t he  approxi- 
mation t h a t  Y = 2. A ca lcu la t ion  of t he  t h r u s t  from sput tered p a r t i c l e s  
follows. 

The r a t i o  of t h e  t h r u s t s  from the  mercury ions t o  the  sputtered t i tanium 
on a per ion  b a s i s  i s  then taken t o  be, from equation (l), 
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and 

so t h a t  t he  t h r u s t  from sput tered p a r t i c l e s  would represent  a t  most one-ninth 
of the  t o t a l  t h rus t .  A rough one-dimensional ana lys i s  i nd ica t e s  t h a t  l e s s  than 
one-half of the  sput tered atoms escapes the  t a r g e t ,  so t h a t  t he  t o t a l  e f f ec t  of 
sput te r ing  on t h e  t h r u s t  measurement w a s  estimated to be l e s s  than 5 percent. 

A measurement of t he  weight l o s s  of t h e  t h r u s t  t a r g e t  over a per iod of 
t e s t i n g  w a s  made t o  a s ses s  the  sput te r ing  l o s s  i n  the t h r u s t  t a rge t .  It w a s  
found t h a t  t he  weight l o s s  corresponded to an average current  of 20 m i l l i -  
amperes of t i t an ium atoms. 
t h i s  l o s s  corresponds to a t h r u s t  of approximately 0.03 millipound, which i s  
about one-tenth of the  smallest  t h r u s t  a t  which da ta  were recorded. 

If the  energy i s  taken to be 50 e l ec t ron  vo l t s ,  

Error  i n  o p t i c a l  cathetometer measurements. - Tests  were ca r r i ed  out with 
t h e  o z i c a l  cathetometer, and measurements were found to be repeatable  t o  with- 
i n  about 5 percent a t  t he  lowest l e v e l s  of t h r u s t  t a r g e t  de f l ec t ion  at  which 
da ta  were taken. 

Total  e r r o r  i n  ca lcu la t ion  of e f f ec t ive  ion  m a s s .  - The preceding con- 
s idera t ions  ind ica te  t h a t  an e r r o r  of-approximately 10 percent i s  the  maximum 
to be expected i n  the  t h r u s t  measurement. 
squared i n  ca l cu la t ion  of the  e f f ec t ive  ion m a s s ,  it i s  concluded t h a t  t h e  
e r r o r  i n  the  values of e f f ec t ive  ion mass should usual ly  be l e s s  than 20 per-  
cent. 

Since the  experimental t h r u s t  i s  
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TABLE I. - HEAVY M0LECUL;E DATA 

Molecule Formula 

Anthracene 

W e n e  

Chry se ne 

1,2,4,5-Tetrabromobenzene 

Pentabr omophenol 

Stannic iodide 

Selenium 

Silicotungstic acid 

aData from ref.  16. 
bNo data available. 

c14H10 

'16'10 

'18'12 

'13'2~~4 

C6Br50H 

Sn14 

H4S iW12 040* 2 4H2 0 

Atomic 
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2 02 
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39 4 

48 9 

626 

632 

3311 
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(b 1 
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1 7  t o  21 

(b ) 

34 

Ioniza- 
t i on  po- 
ten t  ial, 
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;ation PO- mental 
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v pre s sure 
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(4 " ' g  

2x104 
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3~10'~ 
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Figure 1. - Cutaway sketch of 10-centimeter-diameter electron-bombardment thrustor. 
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Figure 2. - Wiring diagram of ion thrustor. 
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Figure 3. - Thrustor and t h r u s t  t a r g e t  pos i t i ons  i n  vacuum tank. 
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Figure 4. - Variation of  effective ion mass with ion beam current for five propellants. 
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F i g u r e  5. - V a r i a t i o n  of  e f f e c t i v e  

d i f f e r e n c e ,  
LVI , 

v 

25 
50 
80 

Ion-chamber 
p o t e n t i a l  

i o n  mass w i t h  

.24 

i o n  beam c u r r e n t  f o r  three v a l u e s  o f  i o n -  
chamber p o t e n t i a l  d i f f e r e n c e .  P r o p e l l a n t ,  
s t a n n i c  iod ide ;  anode p o t e n t i a l ,  5000 v o l t s ;  
a c c e l e r a t o r  p o t e n t i a l ,  -1250 v o l t s ;  magnet ic  
T i e l d  i n t e n s i L y ,  3% gauss;  n e u t r a l  beam CUT- 

r e n t ,  0.075 ampere. 

2 . 0  

I I  
I o n -  chamber 

p o t e n t i a l  
d i f f e r e n c e ,  

AVI > 

v 

25 
50 
80 

3 .0  
Fi lament  emiss ion  cur ren- t ,  JE, amp 

F i g u r e  6. - V a r i a t i o n  of e f f e c t i v e  i o n  mass w i t h  
f i l a m e n t  en;ission c u r r e n t  for three v a l u e s  of 
ion-chamber p o t e n t i a l  d i f f e r e n c e .  P r o p e l l a n t ,  
s t a n n i c  i o d i d e ;  anode p o t e n t i a l ,  5000 v o l t s ;  
a c c e l e r a t o r  p o t e n t i a l ,  -1250 v o l t s ;  magnet ic  
f i e l d  i n t e n s i t y ,  32 gauss ;  n e u t r a l  beam CUT- 

r e n t ,  0.075 ampere. 
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Fit;ure 7. - Variat ion of ion beam cur ren t  with 
f ilameiit emission current .  Propel lant ,  stan- 
n i c  iodide; anode p o t e n t i a l ,  4000 v o l t s ;  ac- 
c e l e r a t o r  p o t e n t i a l ,  -1000 v o l t s ;  magnetic 
f i e l d  i n t e n s i t y ,  32 gauss; n e u t r a l  beam cur- 
r e n t ,  0 .072  ampere; ion-chamber p o t e n t i a l  d i f -  
ference,  50 vo l t s .  

40 80 12 0 
Ion-chamber p o t e n t i a l  d i f f e rence ,  

nv,, TJ 

F igure 8.  - Effec t  of ion-chamber p o t e n t i a l  d i f -  
ference on f i lament  emission current .  Pro- 
p e l l a n t ,  s t ann ic  iodide; anode p o t e n t i a l ,  4000 
vo l t s ;  acce l e ra to r  p o t e n t i a l ,  -1000 v o l t s ;  
magnetic f i e l d  i n t e n s i t y ,  32 gauss; n e u t r a l  
beam cur ren t ,  0 .072;  i on  beam cur ren t ,  0.100 
ampere. 
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80 

Magnetic f i e l d  i n t e n s i t y ,  B, gauss 

Figure 9. - Effec t  of magnetic f i e l d  i n t e n s i t y  
on f i lament  emission current .  Propel lant ,  
1 , 2  , 4,5-tetrabromobenzene; anode p o t e n t i a l ,  
4000 v o l t s ;  acce le ra tor  p o t e n t i a l ,  -1000 
v6l t s ;  n e u t r a l  beam curren t ,  0.300 ampere; 
ion-chamber p o t e n t i a l  d i f fe rence ,  30 v o l t s ;  
ion beam curren t ,  0.095 ampere. 

3000 4000 
Anode poten t ia l ,  VI, v 

Fizure 10. - Effec t  ol" anode p o t e n t i a l  on f ' l ament  
emirslon current .  Propel lant ,  s tannic  :.odide; 
macnet'.c f i e l d  i n t e n s i t y ,  32 gauss; n e u t r a l  beam 
c.x-rent, 0 . 0 7 2  ampere; ion chamber p o i e n t i a l  
d.'.fference, 50 vol ts ;  ion beam curren t ,  0.087 
ampere; r a t l o  of ne t  t o  t o t a l  acce le ra t ing  
voltasce, 0.8. 
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Figure  11. - V a r i a t i o n  of e f f e c t i v e  i o n  mass wi th  ion-chamber p o t e n t i a l  d i f f e r -  
ence f o r  s i x  p r o p e l l a n t s .  
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Figure 12.  - Var ia t ion  of e f f e c t i v e  ion  m a s s  wi th  
ion-chamber p o t e n t i a l  d i f f e r e n c e  f o r  two va lues  
of f i lament  emission cu r ren t .  P rope l l an t ,  s tan-  
n i c  iodide;  anode p o t e n t i a l ,  5000 v o l t s ;  acce l -  
e r a t o r  p o t e n t i a l ,  -1250 v o l t s ;  magnetic f i e l d  
i n t e n s i t y ,  32  ga ISS; n e u t r a l  beam current, ,  
0.075 ampere. 
arrpere a n d  0.050 t o  0.060 ampere a t  f i lament-  
emission-current  va lues  of 0 . 4  and 1 aKpere, 
r e spec t ive ly .  
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Figure 13. - Var ia t ion  of e f f e c t i v e  ion  mass wi th  magnetic f i e l d  
Anode i n t e n s i t y  f o r  1,2,4,5-tetrabromobenzene and anthracene. 

p o t e n t i a l ,  4000 v o l t s ;  a c c e l e r a t o r  p o t e n t i a l ,  -1000 v o l t s .  
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Figure 14 .  - Variation of e f f e c t i v e  ion m a s s  with anode p o t e n t i a l  (ne t  acceler-  
a t i n g  p o t e n t i a l )  f o r  four  propellants.  Magnetic f i e l d  in tens i ty ,  3 2  gauss; 
r a t i o  of net t o  t o t a l  acce le ra t ing  voltage, 0.8. 
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Figure 15. - Variat ion of e f f e c t i v e  ion m a s s  wi th  ion beam 
Propel- cur ren t  f o r  two values of n e u t r a l  beam current .  

l a n t ,  1,2,4,5-tetrabromobenzene; anode p o t e n t i a l ,  4000 
v o l t s ;  acce le ra tor  p o t e n t i a l ,  -1000 vol t s ;  magnetic f i e l d  
i n t e n s i t y ,  32 gauss; ion-chamber p o t e n t i a l  difference,  40 
a@. 30 v o l t s  at  neutral-beam-current values of 0.202 and 
0.300 ampere, respect ively.  
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Figure 16. - Variat ion of e f f e c t i v e  ion mass with ion- 
. chamber p o t e n t i a l  d i f fe rence  f o r  pentabromophenol at  

two values of n e u t r a l  beam current.  
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Figure 18. - Varia t ion  of t h r u s t o r  
power e f f i c i e n c y  with ion  beam 
curren t .  Propel lant ,  s tannic  io-  
dide; anode p o t e n t i a l ,  5000 vol t s ;  
a c c e l e r a t o r  p o t e n t i a l ,  -1250 v o l t s ;  
magnetic f i e l d  i n t e n s i t y ,  32 gauss; 
n e u t r a l  beam c u r r e n t ,  0.072 ampere; 
ion-chamber p o t e n t i a l  d i f fe rence ,  
50 v o l t s .  

0 20 40 
P o s i t i v e  bias on d i s -  

t r i b u t o r ,  v 

Figure 19. - Varia t ion  of effective 
ion mass with p o s i t i v e  b i a s  on 
d i s t r i b u t o r .  Propel lan t ,  1,2,4,5- 
t e t r abr omob e nze ne j anode poten t  i a1 , 
4000 v o l t s ;  a c c e l e r a t o r  p o t e n t i a l ,  
-1000 v o l t s ;  magnetic f i e l d  in ten-  
s i t y ,  32  gauss; n e u t r a l  beam cur- 
r e n t ,  0.300 ampere; ion-chamber 
p o t e n t i a l  d i f fe rence ,  30 v o l t s ;  
i o n  beam curren t ,  0.100 ampere. 
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Fi:yre 20. Var i a t ion  of e f f e c t i v e  ion mass with ion  beam c u r r e n i  
for t h r e e  i o n i z a t i o n  chamber 1;ngLhs i n  10-cent  imeter-diamecer 
electron-bombardment t h r u s t o r .  P rope l l an t ,  s t ann ic  iodide;  
magnetic f i e l d  i n t e n s i t y ,  32 gauss;  ion-chamber p o t e n t i a l  
d i f f e r e n c e ,  30 v o l t s .  
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Figure 21. - Varia t ion  of e f f e c t i v e  
ion  m a s s  wi th  ion  beam curren t  i n  
s ide-propel lant-feed 10-centimeter- 
diameter e l ec t ron  bombardment 
thrus tor .  Propel lant ,  s tannic  io -  
dide; anode p o t e n t i a l ,  4000 vol t s ;  
acce le ra to r  p o t e n t i a l ,  -1000 vo l t s ;  
magnetic f i e l d  i n t e n s i t y ,  32 gauss; 
n e u t r a l  beam curren t ,  0.075 ampere; 
ion-chamber p o t e n t i a l  d i f fe rence ,  
50 vo l t s .  
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